
Introducing Audit Plugin Functions for
Filemaker

Sometimes people want to know who edited which record when and
what values changed. All this questions can be solved with an audit log
and our plugins. The idea is simple: Whenever someone changes
something, we write a records for those changes to the AuditLog. Later
you can check the log or have a script restore the changes.

The MBS Filemaker Plugin 2.8 introduces a few new Audit functions.

To show you how it works, we add Audit Logging to one of the starter
solutions, the Event Management database. First we go and create a new
table named AuditLog. This table can be in a different database file if
needed as long as the plugin can find a table with that name. But in all
cases, we need you to have a layout for the AuditLog table. It's not
required to be user visible, but the plugin needs to find it.

http://www.mbsplugins.de/archive/2012-08-01/Introducing_Audit_Plugin_Funct
http://www.mbsplugins.de/archive/2012-08-01/Introducing_Audit_Plugin_Funct
http://www.mbsplugins.de/archive/2012-08-01/Introducing_Audit_Plugin_Funct
http://www.mbsplugins.de/archive/2012-08-01/Introducing_Audit_Plugin_Funct
http://www.monkeybreadsoftware.de/filemaker/
http://www.monkeybreadsoftware.de/filemaker/
http://www.mbsplugins.eu/component_Audit.shtml
http://www.mbsplugins.eu/component_Audit.shtml

Next we create a couple of fields. Required for the plugin are FieldName,
FieldHash, TableName, RecordID. So we can store which table and which
field changed. RecordID is the unique ID of the record and FieldHash
stores a hash value for the content of the field. Optionally you can add
more fields: FieldValue, FieldOldValue, FieldType, UserName, IP,
CurrentTimestamp, TimeStamp, CurrentTime, CurrentDate, Action,
CurrentHostTimeStamp, PrivilegeSetName, AccountName,
LayoutNumber, ApplicationVersion, FileName, HostApplicationVersion,
HostName, HostIPAddress, LayoutName, PageNumber,
LayoutTableName, TableID, FieldID and WindowName. In this example
we added FieldValue and FieldOldValue, so we know the new and old
values for the change. The action field stores what happened and
FieldType can tell us what data type we have for the value.
You can later add more fields if you like. The plugin dynamically detects
them and fills them with values. Like if you need to know the IP of the
user, simply add a new IP field and all new log entries record the IP
addresses.

Now we can check all the tables in the database. For each we create two
fields. First AuditTimeStamp with the timestamp when record was last
modified. And second the AuditState calculated field which calls our
plugin. The fields do not need to have exact this names. But if you don't
use the default names, you have to change them everywhere and inform
the plugin.

Here you see the definition for the time stamp field. We check the
checkbox to store here the record modification timestamp. Filemaker will
update this field automatically every time the record changes.
We typically do not allow the user to edit the Audit fields.

We define the AuditState field. Simply a text field which is calculated.
Also make sure the checkbox "Do not replace existing value of field (if
any)" is unchecked.
Here we also declare that user should not edit the field.

In the calculation for the AuditState field, we call the plugin:
MBS("Audit.Changed"; AuditTimeStamp; "Contacts"). As you see we
call the Audit.Changed function and pass the time stamp field from
above. Third parameter is the name of the table. Filemaker simply does
not tell the plugin what name the current table has, so we need to pass
it here. If the table contains fields which you don't want to be logged or
you have given AuditState/AuditTimeStamp fields a different name, you
should pass them here as additional parameters. So for example you can
call MBS("Audit.Changed"; AuditTimeStamp; "Contacts";
"myAuditState"; "myTimeStamp"; "internalField"). This way the plugin
will not log those three fields. Unstored calculations and global fields are
never logged. With the function Audit.SetIgnoredFieldNames you can
globally define which fields you want to ignore always.

http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditChanged.shtml
http://www.mbsplugins.eu/AuditSetIgnoredFieldNames.shtml
http://www.mbsplugins.eu/AuditSetIgnoredFieldNames.shtml

When all tables have been prepared, you can use the database. As you
see, the first time the plugin sees a record, it writes log entries with
"Create" as action. Next time you touch the record, you see "Change"
entries for all the changes you made.
You can later add more fields to be logged like UserName or
WindowName.

With Audit.Delete function you can also log deletion of records. But that
is a topic for another blog entry.

If you have questions, please do not hesitate to contact us.

http://www.mbsplugins.eu/AuditDelete.shtml
http://www.mbsplugins.eu/AuditDelete.shtml

