
Data structures in MBS Plugin
Let us show you today the various data structures we have in MBS
FileMaker Plugin and how to use them.

• QuickList
• Dictionary
• Matrix
• JSON References
• SQL Result

In general you can keep huge amounts of data in memory to query
them anywhere with a quick lookup in one of the data structures. Such
a lookup may avoid needing extra relationships and can be faster than
a database lookup.

List
Normally in FileMaker you may have a variable containing a list of
values. You append something with a calculation like this:
Set Variable [$list; $list & $value & ¶]
When you pass it around, you pass the whole list and every append
copies the whole list.
The variable contains the list directly:

https://www.mbsplugins.de/archive/2023-11-27/Data_structures_in_MBS_Plugin/monkeybreadsoftware_blog_filemaker
https://www.monkeybreadsoftware.com/filemaker/
https://www.monkeybreadsoftware.com/filemaker/

QuickList
To improve a list, we add a little indirection. The plugin manages the list
for you and in the variable is just the identifier for the list, usually a
number.

You create such a list with QuickList.New function. Then you can add
values using QuickList.AddValue and when you need a value, check the
QuickList.Count function and the QuickList.GetValue function. If you use
these functions, you can speed up any operation using GetValue() in a
loop.
If you need a quick way to look for the index of a value, please check
the QuickList.IndexOfFirstValueMatching function. To fill a list, you can
pass an existing list to QuickList.New function or fill it using SQL with
QuickList.AddSQL function.

Dictionary
The dictionary stores values for keys. It uses an index and thus is a
great way to quickly lookup values for keys. You can store for example
zip codes and city names in a dictionary or the display names for UUID
values.
You can store various values in the dictionary. Like you can put in
artikel IDs as keys and then put in a list of values as value. This way
you can for example have the price in there with description:
"1234556" -> "Rose¶1.99€¶5,10,50". Then when you lookup the
article, you get the list. This list then contains for example the bulk
price quantities "5,10,50". The same (or second) dictionary then has an
entry "1234556-10" to get the bulk price for 10 times the product:
"Rose¶1.89¶". By storing this lookup tables in memory, you can access
them anywhere very quickly without database access.

https://www.mbsplugins.eu/QuickListNew.shtml
https://www.mbsplugins.eu/QuickListAddValue.shtml
https://www.mbsplugins.eu/QuickListCount.shtml
https://www.mbsplugins.eu/QuickListGetValue.shtml
https://www.mbsplugins.eu/QuickListIndexOfFirstValueMatching.shtml
https://www.mbsplugins.eu/QuickListNew.shtml
https://www.mbsplugins.eu/QuickListAddSQL.shtml

You create a dictionary with the Dictionary.Create function. Use
Dictionary.SetValueForKey function to add one value or use
Dictionary.SetList to put in a list of values with a delimiter. Using
Dictionary.AddSQL you can fill the dictionary using SQL by loading two
fields from a record. The SQL may do calculations like concat multiple
fields to make one value.
If you like to query one value, you can use the Dictionary.ValueForKey
function or alternatively the Dictionary.Lookup function. The last one
returns a default value instead of an error if the key doesn't exist.
Values in the dictionary are stored in their original data type and avoid
the conversion to text. Use Dictionary.ValueTypeForKey or FM.DataType
to check what data type a value has.

Matrix
While a dictionary has only one value for a key, a matrix is a 2D array
which a matrix of values. It can basically store a whole table in
memory.

https://www.mbsplugins.eu/DictionaryCreate.shtml
https://www.mbsplugins.eu/DictionarySetValueForKey.shtml
https://www.mbsplugins.eu/DictionarySetList.shtml
https://www.mbsplugins.eu/DictionaryAddSQL.shtml
https://www.mbsplugins.eu/DictionaryValueForKey.shtml
https://www.mbsplugins.eu/DictionaryLookup.shtml
https://www.mbsplugins.eu/DictionaryValueTypeForKey.shtml
https://www.mbsplugins.eu/FMDataType.shtml

Your variable contains the reference number and our plugin manages
the memory for the matrix. Create it using Matrix.New function and add
values as needed. You may fill a matrix quickly using
Matrix.NewWithSQL function. Then at any time, you can lookup a value
with Matrix.GetValue or Matrix.Lookup functions. Same as the
dictionary, we store the values in their original data types without
converting them to text.
To quickly find a value in one column, we'll add
Matrix.IndexOfFirstValueMatching function for next plugin version.

JSON References
You may use JSON already, but with our plugin you can use JSON
references. Instead of passing JSON around, we pass just the identifier
and the plugin keeps the JSON in memory. This avoids parsing the
same JSON text over and over again.

You usually may start with JSON.Parse to parse some JSON. Or start
with a blank array with JSON.CreateArrayRef function. Then you get an
identifier and to add something you pass in the reference and the value
to add to JSON.AddStringToArray function.
At any time you may pick something from such a JSON with our normal
JSON functions. They all allow you to pass a JSON reference number
instead of a JSON text.

https://www.mbsplugins.eu/MatrixNew.shtml
https://www.mbsplugins.eu/MatrixNewWithSQL.shtml
https://www.mbsplugins.eu/MatrixGetValue.shtml
https://www.mbsplugins.eu/MatrixLookup.shtml
https://www.mbsplugins.eu/MatrixIndexOfFirstValueMatching.shtml
https://www.mbsplugins.eu/JSONParse.shtml
https://www.mbsplugins.eu/JSONCreateArrayRef.shtml
https://www.mbsplugins.eu/JSONAddStringToArray.shtml
https://www.mbsplugins.eu/component_JSON.shtml

SQL Result References
If you use FM.SQL.Execute function, we store the result of the query in
memory and give you a reference number. That is similar to matrix and
you can convert from SQL result reference to a Matrix with
FM.SQL.ToMatrix function.
The records are stored in their original data type and you can retrieve
them using functions like FM.SQL.Field to get a value.
Please don't hesitate to contact us if you have questions.

https://www.mbsplugins.eu/FMSQLExecute.shtml
https://www.mbsplugins.eu/FMSQLToMatrix.shtml
https://www.mbsplugins.eu/FMSQLField.shtml

